Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert.

نویسنده

  • J R Vestal
چکیده

The carbon metabolism of the cryptoendolithic microbiota of sandstones from the Ross Desert of Antarctica was studied in situ and in vitro. Organic and inorganic carbon compounds were metabolized by the microbiota, with bicarbonate incorporation into community lipids occurring primarily in the light. Light intensity affected the photometabolism of carbon with a photosynthesis-intensity response optimum at about 200 to 300 micromoles of photons per m2 per s. Photosynthesis was also affected by temperature, with a minimum activity at -5 degrees C, an optimum activity at 15 degrees C, and complete inhibition at 35 degrees C, indicating that the cryptoendolithic community was psychrophilic. The primary source of CO2 for photosynthesis in situ was the atmosphere. CO2 may also be photometabolized by using the carbon produced from respiration within the endolithic community. Photosynthesis occurred maximally when the microbiota was wet with liquid water and to a lesser extent in a humid atmosphere. This simple microbial community, therefore, exists under extremes of water, light, and temperature stress which affect and control its metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary production of the cryptoendolithic microbiota from the Antarctic Desert.

Primary production in the Antarctic cryptoendolithic microbiota can be determined from biomass and photosynthetic 14CO2 incorporation measurements. Even though good nanoclimate data are available, it is difficult to determine the amount of time when abiotic conditions permit metabolism. Making appropriate assumptions concerning the metabolism of the cryptoendolithic microbiota during periods ...

متن کامل

Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars

Cryptoendolithic microbial communities living within Antarctic rocks are an example of survival in an extremely cold and dry environment. The extinction of these micro-organisms formerly colonizing sandstone in the Mount Fleming area (Ross Desert), was probably provoked by the hostile environment. This is considered to be a good terrestrial analogue of the first stage of the disappearance of po...

متن کامل

Preliminary report on radiocarbon dating of cryptoendolithic microorganisms.

The existence of microbial communities living inside desert rocks has been reported by FRIEDMANN et al. (1967, 1976), first in rocks collected from the hot and dry Negev desert and later in rocks in the frigid Ross Desert of Southern Victoria Land, Antarctica. The extremely inhospitable climatic conditions in both places has led to the suggestion that these organisms have very low rates of met...

متن کامل

Cryptoendolith communities in Antarctic dry valley region sandstones: Potential analogues of Martian life-forms

Introduction: Cryptoendolithic communities colonizing sandstones in the Dry Valleys of Antarctica have been the subject of much research over recent years, owing to their potential as analogues of Martian life-forms. Interest in them stems from the similarities between the Antarctic cold desert ecosystems, representing some of the most extreme of terrestrial environmental habitats, and the cond...

متن کامل

Extracellular Vesicles Derived from Gastrointestinal Microbiota: A New Approach to Clinical Studies

Extracellular vesicles, naturally released from all cell types including bacteria, are of great importance in medical microbiology due to transporting a variety of biomaterials, enzymes, and virulence factors, regulating immunity, and having roles in colonization and initiation of signaling pathways. These vesicles are also secreted from microbiota in the gastrointestinal tract and affect the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 1988